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Abstract. An algorithm is developed for the construction of an invariant torus of a weakly coupled autonomous oscillator.
The system is put into angular standard form. The determining equations are found by averaging and are solved for the
approximate amplitudes of the torus. A perturbation series is then constructed about the approximate amplitudes with
unknown coefficients as periodic functions of the angular variables. A sequence of solvable partial differential equations
is developed for determining the coefficients. The algorithm is applied to a system of nonlinearly coupled van der Pol
equations and the first order coefficients are generated in a straightforward manner. The approximation shows both
good numerical accuracy and reproducibility of the periodicities of the van der Pol system. A comparitive analysis of
integrating the van der Pol system with integrating the phase equations from the angular standard form on the approximate
torus shows numerical errors of the order of the perturbation parameter € = 0.05 for integrations of up to 10,000 steps.
Applying FFT to the numerical periodicities generated by integrating the van der Pol system near the torus reveals the
same predominant frequencies found in the perturbation coefficients. Finally an expected rotation number is found by
integrating the phase equations on the approximate torus.
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1. Introduction

In this work an algorithm for the direct construction of the invariant tori for a pair of weakly
nonlinearly coupled van der Pol oscillators is developed. The system under study is given by

itqz i = 6(1 — z? — az3)11

fl2z2 = e(1 — az? z2)21 	 (1)

where a > 0, a > 0 and A i > 0, and 112 > 0 are linearly independent over the integers.
Equations (1) have been previously studied in connection with generalized averaging methods and
integral manifolds by Hale [1] and Gilsinn [2,3]. The algorithm developed in this work involves
a perturbation technique that yields a sequence of solvable first-order partial differential equations
for computing the coefficients. The technique is motivated by a perturbation procedure used by
Minorsky [4] to develop an integral curve representation for the periodic solution of a single van
der Pol equation.

The dynamics arising from the interaction of coupled van der Pol oscillators have been studied
by many authors in the areas of engineering, electronics, high energy physics and biology. For
example, they have been studied by Minorsky [4] in coupled oscillating circuits, by Hall and
Iwan [5] in vortex-induced oscillations, Hofmann and Jowett [6] and Jowett [7] in synchroton and
horizontal betatron oscillations, Rand and Holmes [8] in a study of phase-locked periodic motions,
Storti and Rand [9] in a study of steady state behavior with strong linear diffusive coupling [9] al so
provides a bibliography with further references to studies of coupled van der Pol oscillations.
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Several authors have studied methods of approximating tori. Diliberto et al. [10] used a method
based on the existence of first integrals. Mitropolskii [11] developed a procedure related to the
generalized method of averaging to approximate some classes of multi-parameter families of
integral curves. loos and Joseph [12] developed approximations for the cross-section of the torus.
Gilsinn [13] extended an approximation result given in Carr [14] for center manifolds to integral
manifolds which become tori in the autonomous case. Dieci et al. [15] have recently developed a
numerical algorithm to compute invariant tori by solving the partial differential equation satisfied
by the tori, but does not yield a representation of the tori. The method developed here differs
from the previous methods in that it is a direct perturbation technique for approximating a torus.
It develops a representation formula that reveals the character of the various periodicities of the
torus. The method is similar to Whittaker's [16] adelphic integral method for computing integrals of
motion for conservative systems. Both approaches develop sequences of solvable partial differential
equations to determine the perturbation coefficients for the expansion. The perturbation technique
developed in this paper, however, is applicable to nonconservative systems.

2. Perturbation Algorithm

If we set

[
0

0 /12 

then equation (1) can be written in the form

	

+ C22z = cZ (z , i)
	

(3)

	

where z = (zi, z2)T, =	 i2)T, =	 and Z = (Z1 , Z2 ) T . The parameters a and a
have been eliminated for simplicity. Bold characters are used to represent vectors.

Introduce coordinates r (r i , r2 )T and 0 = (01 , 02 )T into equation (3) by the transformation

zj = r.7 sin iti0j,

	

zj = /li r; cos pi ,	 (4)

where r3	 0, j = 1, 2. The parameter 'y > 0 is introduced in order to simplify expressions if
necessary. The new system becomes

= d E4) (0, r),
r = ER(0, r),	 (5)

where d = (1, 1)T , <To = ( 11'1, 41'2)T , R = (R1 , R2 )T and

nDi (0,r) = —(1/qp,DZi (z, 1) sin itjOi

Rj (0,r) = (1/7-1-1 ,aDZi (z, i) cos /LA,

for j -= 1, 2.
Define the average of R(0, r) from equation (5) by

Ro(r) = (ii t2/472) 
f2711/11 f2w/p2

Jo	 Jo	
R(0, r) dOi d02,

(2)

(6)

(7)
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where Ro(Ro i , R02)T . R0 is independent of 0 since p i , p,2 are linearly independent over the
integers.

In order to determine the existence of tori a result of Hale [1] on the existence of integral
manifolds can be applied to equation (5). Let

aRoi aRoi 
a Roar i art
ar	 aRo2 8-Ro2 

ar i 	 art _

and R in equation (5) are periodic in 0 with vector period (27r/p i , 27r/µ2 ) T in (0 1 , 02) T . Let r(°)
be a vector such that R0 (r (0) ) = 0 and the real parts of the eigenvectors of aR0 10r have nonzero
real parts. Then there is a vector function r (0, E), periodic in 0 with vector period (2' I 27/µ2)T ,

r(0, 0) = r (0) and r(0, E) is an integral manifold for equation (5) or

zi = r3 (0,E) 7 sin µ3q7,

zi = itt3 r7 (0, Er cos it3 03 , (8)

j = 1, 2, is an integral manifold for equation (3). Since r (0 , €) is independent of t it has been called
a periodic surface by Diliberto and his colleagues [10]. By imbedding r (0 , E) in R3 by the relations

x = (r i + r2 cos p,2 02 ) COS

y = (r i + r2 cos tt202) sin 01,

Z = r2 sin /L202,	 (9)

for 0 < qi <	 0 < 02 < 27/A2 , 0 < r i < r2 , the surface r (0 , E) becomes a torus. The
solutions on the torus are determined by solving

= d 0:1)(0, r(¢, e)) (10)

for 4) then substituting it into r (0 , €). The stability of the periodic surface is locally the same as the
stability properties of the w = 0 solution of the system

aRo
=

	

	 (r(0))w.
Or

For a further discussion see Hale [1]. The principal objective in this work is not stability questions
but to develop a constructive procedure to approximate r(0, E).

To begin with the construction assume an expansion for r = r(0, E) in the form

00

r = E Enr(n)(15),
	 01)

n=0

where we seek r (n) (0), n = 0, 1, • • •, each with vector period (27rhi i , 27/p,2 ). In terms of coordi-

nates r (n) (0) = (r (1n) (0) r n) (0))T for each n.
Since we assume that equation (11) is a periodic surface, it must satisfy equation (10) and the

second equation in (5). Differentiating equation (11) gives

°°	 ra)
= E En 	 [d 01)(0 , r (0 , E))]•	 02)

n=0



1 I I

2
E ,,,,,,c81) ... E E su (s)

[ i =1	 31	
„,

S] =  sn=1

It is not hard to show by an inductive argument that

00	 00	 00
[E eircsol • • • E enr.,cnsd = E Es

31	 r	 r3n• • •	 •
( S 1)	 (.9,0

s1=1	 sn=1	 s=n	 si-1-••.-Fsn=s

where j i , • • • , jn = 1, 2. Then equation (15) can be rewritten as
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We want to write the right hand side as powers of E.

In order to expand 40 (0, r(4, €)) we need to use the multivariate form of the Taylor expansion
co	 a n4,

<(O,r + w) = E 
arn 

), r)wn ,
n! 

(13)
n=0

where r = (ri, r2)T , w (w l, w2)T and

n 	 2	 n(Di

arn(d) ' r)wn	 E " E 	 (o, r )w • • • Winin=i	 ii=i uri,, • • • yr j,

i=1,2

Expanding 4)(0, r(4, 6)) using equation (13) and equation (14) gives

4, [0, r(o) E Esr(s) 1 	 (No, 
r(

°))	 co	 2

n	

an4.oo

s=1	 n=1	 iLdn=i	 i1=1 arjn • • • aril

(14)

(16)

(15)

tt• [0, r (°) + 	 er(s)
s=1

00

	= 4, (0, r (°) ) + Ec E e	 E
n=1 s=n	

am a n
	 (0, r (° ) )r (s1) • • • r(sd

0 00	 1 an4.

To further expand equation (17) we make use of the following identity
oo Do	 oo	 [

E E eA(n, s) = E E A (s,n1 ,
n=P s=n	 n=p	 s=p

where p is a nonnegative integer. Then equation (17) becomes

<D[0, r (°) + Eer(s)
s=1

oo	 n	 ak4.
\

	

= 4) (0, r(°)) E En E	 E	 r(0))r(n1)	 r(nk).
in=1 k=1 ni+.••+nk=nd ar k

In the next reduction the following identities are used:
00 00	 00	 [i-2
E E ei+n+1 A(i,n) E E A(n, i — n — 1)1
i=0 n=1	 i=2	 n=0

Do	 00

E ci+1 A(i) = E Ei	— 1).
i=p	 i=p+1

(17)

(18)

(19)

(20)
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Inserting equation (19) into equation (12) and using (20)

• ar(t)	ar(z)	 4,(A, r(0))

	

EE	 " i2-1=0 E DO "'i=0
00 00
E E Eid-n+1 ar(i) nE	 E	 (4), r (0)) r (n i )	 r(nk)1 ak.l.

	

i=0 n=1	 k=1	 ark

	

Or M 	[ar(1)  
d + 

ar(°)  
(1)(0, r(°))1

Do d 
+ E

a 	 ao

+Ed

	

°°	 [ar(i )	 ar(i_i)
ao 

d+
ao

4, (0 r(0)

	

i-2ar(n) i—n-1	 1 ak4.+E 	  k! ark (1),r''')r'n') • • .r(nk)
n=0 9 k=1

Now we expand the right hand side of the second equation in (5) and get, by similar manipulations,

oo	 i-1 1 akR

	

ER(0, r) = €1=1(0, r0) ) + E Ei E	 E	 r(ni) r(nk).	 (22)
k! ark

Equations (21) and (22) and rearranging gives the following sequence of partial differential equa-
tions

ao

ar(1)aro)
d	 R(0, rk()))	 	4,(0, r(0))

ao	 ao

ar(i) 
d	

i-1 1 ak R (o,ro)r(ni) r(nk)
E 	 E045	 k! ark
k=1

ar(n)	 1
ao 	 k! ark  (0 , r(0))r(ni)	 r(nk)

n=0	 k=1

for i > 2.
To solve this system we will use a result from Diliberto et al. [10].

THEOREM 1. A necessary and sufficient condition that there exist a doubly periodic solution of

ar	 ar
ao 1 + ao2 = G(01,02),

with vector period (27/µ i , 27/p2 ) in (6, cb2 ) is that

1

27/m i f27r/n2

J o 	Jo

where G(0 1 , 02 ) has vector period (271 - I	 27//12).

i=2

293

(21)

i=2 k=1 ni+•••+nk=i-1

ar(°)
d = 0

('23)

G (0i, 02) clOi €102 = 0
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The first equation in (23) implies that 7.(°) is a constant and that aroVao = 0. The second equation
then becomes

ar(1) d = R(0, r (° ) ). 	 (24)ao

Theorem 1 implies that 7.(° ) must satisfy

Ro(r(0)) =	 f/' 27r/ Fig /'27r/1.c2
R(0, r (° ) ) 4. 1 42 = 0,

	

472 0	 A

which is the first of Hale's [1] conditions that a periodic surface exist. Once 7.(°) is fixed then r(1)
is computed from equation (24) with integration constants. To fix r (1) , integration constants must
be determined by setting the average of the right hand side of

ar(2) —
 DR 

r	 4*	  (1)	
aro) 

(0, 7-0))	
aro) a.D

r (1)	 (26)ao	 ar	 Do	 Do ar

to zero and solving for the integration constants. In particular we solve for integration constants
such that

	

f271-hµ2 aR	 0

L	
ar(1) 

	a r	 (0, r( ) ) r( ) (0)	 4.(0,r(°))1 d01	 = 0.

Since the integration constants are the leading terms of 7- (1) (0) and do not appear in ar(1)/30,
their evaluation depends only on the invertibility of the matrix

/27r/µl /27/A2 (9R

Jo	 Jo	 —Or ((b, r(°)) d°1 42•

Assuming the matrix defined by (28) is invertible, this process continues. In general to solve for
r(Z

) we solve the general equation at the i-th stage for a particular solution, introduce an integration
constant and fix it by setting the average of the right hand side of the (i + 1)-th general equation to
0. From the structure of equation (23) we can state

THEOREM 2. If Ro(r (° ) ) = 0 and (28) is nonsingular then (23) can be solved sequentially for
r (°, r( 1 ),	 each of vector period (27rhi l , 27//12).

In the next section we will apply this technique to equation (1). In order not to become overburdened
with algebraic detail we will show the construction of terms up to order e only.

3. Application

In order to apply the results of the previous section to equation (1) we will transform it by introducing
u i = z1, u2 =	 w1 = Z2, w2 = z2 and getting

u l = U2

= muiu i c(1 — ui — awf)u2

W2

th2 = —itiwi c(1 — ceui — Wi)W2 .	 (29)

(25)

(27)

(28)
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1/2 .	 1/2	 1/2 .	 1/2Let Ul = r i sin/110h u2 = ,u, i r i cos it iCbt, 'tut = r2 sin/1202, w2 = it2r2 cos ,a2 02 , where
r i , r2 > 0. Then equation (29) can be rewritten in the form

it. = d ± e4(0, r),
r = €R(0, r),	 (30)

where d = (1, 1)T , r = (r i , r2 ) T , 0 = (0 1 , 02 ) T and

[
_

4)10,	
1

( r) =	 — (sin p i 0i cos it i 0 1 — r i sin3 ,a 1 0 1 cos µl&
At

—are sin µ10i cos At& sin 2 /t202),

[—
	 .

4)2(0, r) = 	 (sin /12 02 cos /1202 — ar i sin2 /2 1 0 1 sin it.t202 cos ii202
At

—r2 sin3 it2 02 cos t1202) I

1:6(0,r)
	

2ri(cos2 ittiOt — r 1 sin2 01 cost	— art cost	sin2 P,202),

R2(0,r) = 2r2 (cos2 p,2 02 — art sin2 11101 cost [1202 — r2 sin2 /.6202 cost /1,202)•	 (31)

The components of the average in equation (7) for equation (31) are

Roi (r) = r i (1 r1— —
4 

—a2

R02 (r) = r2 1 — ari— —
T2
—) .

	

2	 4
	 (32)

If we solve for r such that R01 (r) = R02 (r) = 0 we get four cases:

1. ri = r2 = 0
2. ri 0,	 r2 = 4
3. ri 4,	 r2 = 0

4 — 8a 4 — 8a
4. ri

1 — 4aa' r2 =	 •1 — 4aa

The first case represents the trivial origin solution. The next two represent separate limit cycles. Case
4 is the more interesting case of the periodic surface and it is with this case that we will be concerned.
We must first assume that 1 — 4aa is nonzero. For numerical reasons we will consider values of a
and a that lead to asymptotically stable periodic surfaces. By applying the Routh—Hurwitz criteria,
Cronin [17], to arto/ar it can be shown that the points in case 4 are asymptotically stable provided

1 — a — a	 (2a — 1)(2a — 1)
	  > 0,	 > 0.	 (33)

1 — 4aa	 1 — 4aa

Since we must also have r 1 > 0, r2 > 0 this implies that 0 < a < 1/2, 0 < a < 1/2 is the
appropriate region of interest.

We can now proceed to the expansion by applying the iteration in equations (23). We assume
that the expansion is given in the form equation (11). From the discussion after equation (26) we
know that

r(0) r  4 — 8a 4 — 8a  1 T
1 — 4aa' 1 — 4aa
	 (34)
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For the sake of simplicity we will let 71° ) , rT ) be the components of 7 .(° ) . Then equation (26)
becomes

	

ar(1 1)	 0111) 

	

a0i	 + .902 
= 2(71° ) ) cos2	— 2(r (1° ) ) 2 sin2 wl01 cos2 mcbi

—2a(rr)(r cl1 ) cos2 y'I5 sin2 p,202,

Vi 2

	

(1 	 ar(1)

	

2 	 2(rT1)cos2p202 — 2ce(r(1°))(rT)) sin2	 cos2 µ202
a.951 	aq52

—24 1 ) 2 sin2 1L202cos2 /1202.
	 (35)

(
By insertion of an assumed trigonometric form it is straightforward to show that r (

i
i) 

, r2
i)
 are given

by

(1)r 1 = A +
1 1[ ( 0)	 ar(10) 7 0) 1 .

2 	 sin 2//101
[2ibi	 r1

1	 {(rr)2 ] .

[4p, i 	4	
4/1101

Isin 2A202
1 1	 [ar(1°)rT) 

1_2/12]	 2
1	 [ar(io)4))

+ 2A2]	 4	

1 1 [arr IT))

[2p, 1 — 2A21	 4

sin(2,a101 4202)

sin(21i101 — 41202), (36)

(i)r2 = B [1 [ar i°)r2(0)

1 

sin 2itioi
2

[2/2
1	 (0)	 arr 7-11)

r2
21 [r2

sin 212 02

l 1	 (rT))21 sin 4/1202

	

[4,u,2	 4

Car(0)r(0)
sin(2/1101 + 41202)

+1[211i 2,112]	 4

1 [ar(1017.0)]
sin(2iti 01 — 4202).4[2iti 21t2

In order to determine the integration constants A and B we compute the right hand side of

ar(2)  
d = 

aR 
r(1)	

aro)  
4,(, r(°)),

ao	 Or	 ao
	 (37)
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(41)
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which when written in component form is

ar (2)	 a (2)

801	 802

aRi r(0),_(1) + aRi	 ,..(0) \ _0)

)11 -r a "P ' r )T2

	

0711) (1.1(A	 aro)

	

r(°))	 1  4)2 ( A 7,0))

	

301	 -'	 '	 302	 -'	 ''

0r22) 	 ar(2)2  + 	 2  — aR2 
"P
, A 

r
_. (0 ) \ _(1) i OR2 ( r (o) \ r(1)

301	 302	 an	 '	 )11 -1- ar2 "I''	 ) 2

	

(97*
(1) 	

ar)

	

80
2  4, 1 (0 r(0)) 	2  ,1, (A r(o))•

	

1	 \ '	 '	 .302	 "r'

Since each of the right hand sides contains a significant number of terms we only give the averaged
equations for the right hand sides of equation (38).

ar (°)	[arr B =
2	 2 

A	
2

ar
2
V) 1 A + [1 ar	 (10)	 B — 0

2	 2

(By the choice of r (10) and r20) we know that

r (0)
1	 ar (0)

2  =

4	 2

(0)	 (0)ari	r2
2	 4	

0.

Using equations (40), equations (39) reduce to

[

_ Tr I A ± arr B =
4	 2

ar(°) A + [_	
B =
 0.

2	 4

The determinant of this system is

[-
1
1
6

] (r(i°)r2°))(1 — 4aa). (42)

But by choice r(1°) , rV) and (1 — 4aa) are all nonzero. This implies from equations (41) that

A = B 0. From equations (36) we have il l) and 7.1) . Finally then to first order in E we can write

r(c5,E) r(°) + Er(1) , (43)

where r (°) is given by equations (34) and r( 1) = (Tr , 41) ) T where 71 1) and 7 1) are given by
equations (36) with A = B 0. The procedure can be continued in order to generate higher order
terms by using a symbolic manipulation program.

(38)
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4. Numerical Results

Given equation (43) we can investigate the behavior of the solutions on the torus and compare them
with the numerical integration of equations (30) near the torus. All of the following integrations
were performed on a personal computer with math coprocessor support. Double precision arithmetic
was used in the integration routine, which was based on Gear's method [18]. To be specific we will
consider the case with

E = 0.05,

a = 0.20,

a = 0.40,

11 1 = 1.0,

11,2 = 1.414.	 (44)

From equations (34) we have

rat = 3.53,

7'02 = 1.18.	 (45)

For the sake of notation let

4'(q5, 6 ) = 4)(0, 1'(* €)),	 (46)

where r(4, €) comes from equation (43) and is defined by the first two equations of (31). The
flow on the torus is generated by integrating the phase equation

= d 4(0, €)	 (47)

and substituting the results into equation (43).
Figures 1 (a) and 1 (b) show two pictures of the torus. These pictures are drawn to show that

integrating the full system of equations given by equations (30) and integrating equation (47)
on the torus lead to graphically indistinguishable tori. In Figure 1 (a) the full system (30), (31)
was integrated with an initial condition on the appropriate torus. In Figure 1 (b) system (47) was
integrated and the radial values were computed from equation (43). The same initial conditions
were used for all of the figures. In particular the integration conditions were 01 0.0, 02 = 0.0,
r i = 3.53, r2 = 1.18, 6t = 0.2, # steps = 1500.

Since the quality of the approximation cannot be determined graphically a more detailed error
study must be performed. Figure 2 shows what the phases and amplitudes look like after integrating
on the torus. Figures 2(a) and 2(b) show the phases from the integration of equation (47) on the
torus with Figures 2(c) and 2(d) generated from equation (43). The phases are linear as would be
suggested from equation (47). The amplitudes for r oscillate about r i = 3.53 and r2 = 1.18. The
amplitudes from integrating equations (30) and (31) are not shown since they are nearly equivalent
to Figures 2 (a) through 2 (d) and would add no new information. One advantage of using a
representation of the torus in all of the computations lay in the amount of computing time saved.
Integrating equations (47) and (43) on the torus took one fifth the time of integrating the equations
(30) and (31). This was experienced with all of the numerical calculations.

In order to study the periodicities superimposed on the linearities shown in Figure 2 a least
squares program was used to subtract the trend lines. Figure 3 shows the periodicities superimposed
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APPROXIMATE TORUS
FULL SYSTEM INTEGRATION

(a)

APPROXIMATE TORUS
PHASE EQUATION INTEGRATION

(b)
Fig. 1. Trajectories on the torus: (a) full system, (b) phase equations only. Initial conditions: ck i = 0, 02 = 0, r l = :3.53,
r2 = 1.18, integration step size = 0.2, number of steps = 1500.

upon the trends shown in Figure 2. Again the periodicities superimposed on the trends from
integrating equation (3) are not shown since they are graphically similar to Figure 3.

Figure 4, however, shows some of the details of the differences of integrating the full system
(30) near the torus and integrating equation (47) on the torus. These figures show the absolute error
differences between system (30) and equations (47), (43). Table I shows the maximum errors given
in Figure 4. This table shows that the errors for 1500 steps are an order of magnitude better than



337.56

253.22

168.88

84.54

0.20

253.18

168.85

84.52

020

(a) TIME	 (b)

AMPLITUDE R 1
Max = 3.65	 Min = 3.41

1.23 -

3.61 - 1.20

3.54 1.18

3.47 1.15

3.41 113

TIME

AMPLITUDE R 2
Max = 1.22 Min = 1.13

I,
224.4	 299.2224.4	 299.2	 0.0

	
74.8
	

149.6

(d)
	

TIME

0.0

(c)

74.8 149.6

TIME
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AMPLITUDE PHI 1
	

AMPLITUDE PHI 2
Max = 300.00 Min = 0.20

	
Max = 299.96 Min = 0.20

00
	

74.8
	

149.6
	

224.4
	

299.2
	

00
	

74.8
	

149.6
	

224.4
	

299.2

Fig. 2. Integrating phase equations on the torus: (a) and (b) show the phase amplitudes, (c) and (d) show the radial
amplitudes. The initial conditions are the same as Figure 1.

the order of the perturbation parameter, E = 0.05.
An extended error comparison between the phase and radial equations in system (30) and those

of the approximation given by equations (47) and (43) are given in Table II. Both systems were
integrated for 10,000 steps and the maximum absolute and relative errors up to the step number
shown are given in the appropriate columns. For example under the 0 1 columns the maximum
absolute error and relative error between the 0 1 phase equation in system (30) and that in equation
(47) are shown. At 1000 steps of St = 0.2 the maximum absolute error of all steps up to 1000
is 2.0E-3 and the maximum relative error is 1.0E-5. Note that from step 5000 to 10,000 the 01
maximum errors do not change. The absolute error can be interpreted as a measure of the number of
digits to the right of the decimal that compare favorably and the relative error can be interpreted as
a measure of the overall number of digits that compare favorably beginning with the leading digit.
For example at step 9000 0 1 = 1799.878 from system (30) and 0 1 = 1799.909 from equation (47).
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Fig. 3. These figures show in greater detail the periodicities superimposed on the linear trends of the amplitudes shown
in Figure 2.

TABLE I

Maximum errors between inte-
gration of the full van der Pol
system and the phase equations
on the torus for 1500 steps

Equation Max. Abs. Error
0.0026

492 0.0055
rl 0.0042

r2 0.0016
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Fig. 4. Absolute errors between integrating the full system and the phase equations on the torus. (a) and (b) show the
phase differences where (c) and (d) show radial differences. Initial conditions as in Figure 1.

The absolute error here is 3.1E-2 which is less than the maximum given in Table II as 6.7E--2. This
maximum relative error says that a little more than one digit after the decimal compares exactly.
The maximum relative error of 7.2E-5 at step 9000 of 0 1 says that somewhat fewer than 5 digits
compare exactly. This is reflected in the example above. The same analysis applies to the other
columns. In order to interpret r I and r2 note that in magnitude they have one digit to the left of the
decimal as is clear from equations (43) and (45). Although Table II shows that both types of errors
grow as the number of steps increase it also shows that the absolute errors are all approximately of
the order e 0.05 throughout the 10,000 steps.

Another measure of the quality of the approximate formula for the torus is whether it reproduces
the periodicities experienced by integrating the full system (30) near the torus. The comparison is
shown graphically in Figures 5 and 6. In Figure 5 the log scaled amplitudes of the periodograms
of each of the angular and radial components for system (3) with the trends removed is shown. In
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TABLE II

Long term accrued errors between the van der Pol system
and the phase equations on the torus for 10,000 steps

Steps Abs. Err. Rel. Err.
02

Abs. Err. Rel. Err.

1000 2.0E-3 1.0E-5 5.0E-4 2.7E-6

2000 1.0E-2 3.6E-5 2.4E-3 7.0E-6

3000 1.3E-2 3.6E-5 2.4E-3 7.0E-6

4000 5.0E-2 6.3E-5 6.1E-3 8.5E-6

5000 6.7E-2 7.2E-5 7.3E-3 8.5E-6

6000 6.7E-2 7.2E-5 1.1E-2 9.5E-6

7000 6.7E-2 7.2E-5 2.1E-2 1.5E-5

8000 6.7E-2 7.2E-5 2.3E-2 1.5E-5

9000 6.7E-2 7.2E-5 4.2E-2 2.3E-5

10000 6.7E-2 7.2E-5 5.4E-2 2.7E-5

Steps

r i

Abs. Err. Rel. Err.
r2

Abs. Err. Rel. Err.

1000 2.9E-3 8.1E-4 1.4E-3 1.2E-3

2000 4.4E-3 1.2E-3 1.7E-3 1.4E-3

3000 4.4E-3 1.2E-3 1.8E-3 1.5E-3

4000 8.6E-3 2.4E-3 2.1E-3 1.8E-3

5000 1.2E-2 3.3E-3 2.2E-3 2.0E-3

6000 1.3E-2 3.8E-3 2.4E-3 2.3E-3

7000 1.3E-2 3.8E-3 2.7E-3 2.4E-3

8000 1.3E-2 3.8E-3 2.8E-3 3.4E-3

9000 1.3E-2 3.8E-3 4.0E-3 4.4E-3

10000 1.3E-2 3.8E-3 5.3E-3 4.4E-3

Figure 6 the comparable graphs are shown for the approximation given by equations (47) and (43).
It is clear from these figures that the dominant peaks are reproduced by the approximation formula.
How close they reproduce the peaks is shown in Table III. This table is organized into three sets of
columns under each of the angular and radial components. The columns under the full system title
are taken from Figure 5. Those under the approximate columns are taken from Figure 6. In the first
column of each set the frequency (in Hertz) of the peak is given. In the second column the letter
`s' means that the peak is strong, or has greater than one order of magnitude of amplitude. A 'w'
means that the peak is weak or has less than an order of magnitude in amplitude. The third column
in each set gives the log of the amplitude of the periodogram for the given frequency. The same
columns are given under the approximate set. Finally the last column shows the best estimate of the
theoretical radial frequency, w, in radians/sec, associated with the peak frequency. Only those radial
frequencies that are present in equations (36) are identified. Notice that they represent the strongest
peaks. The weaker peaks are represented by higher harmonics that do not appear in equations (36).
The radial frequencies are related to the frequencies in Hertz (f) by w = 27f . A glance at Table. III
shows that the approximate formula for the torus from equations (47) and (43) not only reproduces
the strong peaks but also reproduce the log amplitudes of the components. Differences occur in the
weak peaks or those with log amplitudes near 0. Table III shows that the first order approximation
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Fig. 5. Spectral plots of the amplitudes of the phase and radial equations for the full system with the linear trends
removed. The initial conditions are as in Figure 1.

equations (36) capture the essential periodicities on the torus.
Another interesting question of the flow on the torus involves the rotation number, Coddington

and Levinson [19]. In Figure 1 take the x-axis toward the viewer, the y-axis toward the right and the
z-axis vertical. Then let parallels be the curves on the torus cut by planes parallel to the xp -plane.
Let a meridian be the curve cut by the xz-plane and the torus. The rotation number can be thought of
as the average rotation about the meridian for one trip around the parallel. To compute the rotation
number begin by defining the quotient

d02	 1 ± El$2(01) 02) E) 

d01	 + 4 1(01, 027 E)

where 4. 1 , :$2 are the components of equation (46). Note that 4 . 1 , :$2 are periodic in 0 1 with period
Pl = 27/[t 1 and in cb2 with period P2 = 27r/ /.t2 . Let the solution of (48) be written as

(48)

02 = 02(01, n),	 (49)
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TABLE III

Frequencies for the periodicities superimposed on the linear trends for each of the
phase and radial components

01
Full System

Freq.(Hz)	 Qual.	 Log. Amp. Freq.
Approximate

Qual.	 Log. Amp.
Theoretical
Rad./Sec.

0.1367 s 2.41 0.1333 s 2.43 2/22 - 2/21
0.3167 s 4.00 0.3167 s 4.00 2/2,1
0.4500 w 0.64 - - - 2/22
0.6400 s 3.76 0.6400 s 3.77 4/2,1
0.7667 s 1.04 0.7700 s 1.08 2/22 + 2pi
0.9533 s 0.19 0.9567 w 0.19
1.2733 w -0.61 - - -

02
Full System Approximate Theoretical

Freq.(Hz) Qual.	 Log. Amp. Freq. Qual. Log. Amp. Rad./Sec.
0.1333 s 4.00 0.1333 s 4.00 2p2 - 2/21
0.4467 s 3.12 0.4500 s 3.12 2/22
0.7667 s 2.44 0.7700 s 2.41 2/22 + 2pi
0.9000 s 2.50 0.9000 s 2.50 4/22

ri
Full System Approximate Theoretical

Freq.(Hz) Qual.	 Log. Amp. Freq. Qual. Log. Amp. Rad./Sec.
0.1300 s 2.41 0.1300 s 2.41 2/22 - 2/21
0.3167 s 4.00 0.3167 s 4.00 2/21
0.6367 s 3.76 0.6367 s 3.76 4/21
0.7700 s 0.94 0.7700 s 0.93 2/22 + 2/2i
0.9533 s 0.40 0.9533 s -0.42

- - - 1.2733 s -0.27
1.0867 w -0.93 - - -

r2

Freq.(Hz)
Full System

Qual.	 Log. Amp. Freq.
Approximate

Qual.	 Log. Amp.
Theoretical
Rad./Sec.

0.1333 s 4.00 0.1333 s 4.00 2/22 - 2/21
0.3167 s 3.83 0.3167 s 3.83 2p,i
0.4500 s 3.14 0.4500 s 3.13 2/22
0.6367 s -0.11 0.6367 s 0.08 4/21
0.7700 s 2.45 0.7700 s 2.45 2/22 + 2pi
0.9000 s 2.54 0.9000 s 2.53 4/2,2

- - - 0.9533 w -0.46
- - - 1.0333 w -0.68

1.0867 w -0.37 1.0867 w -0.67
1.2200 w -1.04 - - -
1.3500 w -1.13 - - -
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Fig. 6. Spectral plots of the amplitudes of the phase and radial equations for the approximate system with linear trends
removed. The initial conditions are as in Figure 1.

where

02 (o, 	 = no,	 (50)

and 0 < 770 < P2. Define

71. = 02(nPi,	 (51)

and the rotation number as

Tin 
p =	

nP2
•

Using (50) one can estimate the rotation number. In particular if E = 0 in equation (48) then

d02	1
d01

(52)

(53)
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Integrating over n periods P1 gives

777, = 271-nhti	 (54)

Then from equation (52) p = µ2 /µ i . Using conditions (44) an integration of equation (48) for 100
traverses around the torus yields p = 1.413941 which approximates A21 = 1.414 (see equation
(44)). The difference between the computed result and 1.414 comes about because € > 0 in equation
(48).

5. Conclusions

This paper has shown that there is a straightforward algorithm that unites a perturbation series with
averaging to generate approximate tori for autonomous coupled nonlinear oscillators of the form
of equation (3). The perturbation series requires the solution of a sequence of partial differential
equations. These are shown to be easily solvable by trigonometric series of multiple angles. In the
application of the result of two nonlinearly coupled van der Pol oscillators the computation showed
that a significant time savings is possible for the study of flows on the torus by the availability of the
approximate torus representation. The comparison of the integration of the full system of coupled
oscillators in angular standard form and the approximate phase and radial equations on the torus
showed that the accumulation of error remained less than the order of the approximation for long
integration periods. In particular for an approximation of the first order in the perturbation parameter
the errors in the comparisons of the phase and radial equations maintained themselves to the same
order. Thus for a perturbation parameter c = 0.05 the errors in the phase and radial equations
were all approximately 0.05 or less. The periodicities superimposed on the background trends
are essentially maintained between the full and approximate systems. This is shown by a spectral
comparison that shows that not only are the predominant peaks recovered by the approximation
formula but also the strength of each peak is comparable. Finally the rotation of the flow on the
torus compares favorably with that predicted.
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